Turing Machines and Undecidability

Lucian Chauvin

Mathematics and Computer Science Undergraduate Texas A&M University, College Station, TX

April 30, 2024

Lucian Chauvin Turing Machines and Undecidability Texas A&M University

Motivation

- Undecidability has been regarded as one of the most philosophically important problems in the theory of computation
- If your problem is undecidable, good luck deciding

Turing Machine

Definition

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are finite sets and

- **1** \mathcal{Q} is the set of states
- **2** Σ is the input alphabet not containing the **blank symbol** \sqcup
- **3** Γ is the tape alphabet (symbols), where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
- **4** $\delta: \mathcal{Q} \times \Gamma \to \mathcal{Q} \times \Gamma \times \{L, R\}$ is the transition function
- **5** $\{q_0, q_{\text{accept}}, q_{\text{reject}}\} \subseteq Q$ and are the start state, accept state, and reject state respectively where $q_{\text{accept}} \neq q_{\text{reject}}$

Existence of Undecidable Languages

Conclusion 000

An Example

Symbol State	0	1	2
A	√,0,R	E,0,L	×,2,L
В	√,0,L	\times ,1,L	F,0,L
С	A,0,L	C,1,R	C,2,R
D	B,0,L	D,1,R	D,2,R
E	F,0,R	E,1,L	E,2,L
F	√,0,R	C,0,R	D,0,R

Lucian Chauvin

Existence of Undecidable Languages

Conclusion

An Example

Lucian Chauvin

Introduction 00 Definitions

Existence of Undecidable Languages

Conclusion 000

An Example

Lucian Chauvin

Texas A&M University

Definitions 0000● Existence of Undecidable Languages

Conclusion

Turing Recognizable and Decidable

Definition (Turing-recognizable)

A language is **Turing-recognizable** if some Turing machine recognizes it.

Definition (Turing-decidable)

A language is **Turing-decidable** or just **decidable** if some Turing machine decides it.

Existence of Undecidable Languages •000 Conclusion

A New Language

$A_{\mathsf{TM}} := \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

Theorem

A_{TM} is Turing-recognizable.

Proof.

- U = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
 - 1 Simulate M on w
 - If M ever enters an accept state, accept; if M ever enters a reject state, reject"

Is A_{TM} decidable?

Let us assume A_{TM} is decidable. Then there exists a TM H such that

$$H(\langle M, w \rangle) := \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

Lets also define a new TM *D* such that

- D = "On input $\langle M \rangle$ where M is a Turing machine:
 - **1** Run *H* on input $\langle M, \langle M \rangle \rangle$
 - **2** Output the opposite of H''

Existence of Undecidable Languages 0000

Conclusion

What does *H* look like?

w M	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$		$\langle D angle$	
<i>M</i> ₁	accept	reject	accept		accept	
M_2	reject	accept	reject	• • •	reject	• • •
M_3	accept	accept	reject		accept	
÷		÷		·		
D	accept	reject	reject		?	
÷		÷				·

What happens at ?

$$D(\langle D \rangle) := egin{cases} accept & ext{if } D ext{ does not accept } \langle D
angle \ reject & ext{if } D ext{ accepts } \langle D
angle \end{cases}$$

Contradiction!

What ever D does, it is forced to do the opposite. Therefore, our assumption if false and A_{TM} is not decidable.

Interesting Results

- Kurt Gödel showed there are undecidable problems in number theory
- Conway showed a generalization of the famous Collatz problem is undecidable
- Hilbert's 10th problem
- and in general, any nontrivial property about the language recognized by a Turing machine is undecidable (Rice's theorem)

Sources

- Sipser, M. (2013). Introduction to the Theory of Computation. Boston, MA: Course Technology. ISBN: 113318779X
- John H. Conway. (2013). On Unsettleable Arithmetical Problems. The American Mathematical Monthly, 120(3), 192–198.

https://doi.org/10.4169/amer.math.monthly.120.03.192

Thank You!

Lucian Chauvin Turing Machines and Undecidability Texas A&M University